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ABTRACT

Adiabatic thermoelastic heating can be used to monitor stress fluctuations in

solids. Previous studies of the effects on the temperature fluctuations both of applied

static stress and of the finite amplitude of the stress fluctuations have used approximate

theory. The present rigorous thermodynamic treatment distinguishes between adiabatic

second order derivatives needed for finite amplitude and mixed derivatives needed for

static applied stress. A detailed analysis is given for purely compressive stress, followed

by computations for KCl, NaCl, Al, Cu, Ti, and the alloy Ti-6Al-4V. Additional terms

revealed by the new analysis prove to be substantial, including the difference between

the adiabatic and mixed derivatives. Revised forms are then proposed for earlier

approximations. For unidirectional stress, expressions are taken from an analysis given

elsewhere; and computations made for Al, Cu, Ti and Ti-6Al-4V. Corrections to earlier

approximations are relatively smaller than for compressive stress, and of opposite sign

because the shear component of the unidirectional stress dominates the second order

effects.
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1. INTRODUCTION

Oscillating stresses in solids give rise to oscillations in temperature. This provides

a means of monitoring stress fluctuations in a material: the associated temperature

fluctuations are scanned over the surface of the material with the aid of a sensitive

infra-red detector [1].

Although in applications important effects can arise from frictional processes and

from heat flow, in essence the phenomenon is adiabatic. It is sometimes characterised

by a “thermoelastic constant”, defined by [2]

K = − 1

T 0

(
∆T

∆σ

)
S

, (1)

where T 0 is the mean temperature and ∆T is the amplitude of the adiabatic cyclic

change in temperature caused by a cyclic change in the sum of the principal stresses

of amplitude ∆σ. We may note, however, that eq.(1) defines K uniquely only for

isotropic or cubic materials under hydrostatic pressure, since otherwise ∆T depends

upon the directions of the principal stresses and how ∆σ is distributed among them.

Furthermore, even these materials lose their symmetry as soon as an anisotropic stress

is applied, and so the derivatives of K with respect to such stresses are ill-defined. We

shall therefore retain K only for isotropic or cubic materials under isotropic pressure,

and redefine it as the “thermoelastic coefficient”

K = (1/3T )(∂T/∂P )S. (2)

For anisotropic stresses we shall refer only to the stress derivatives of T .

In any case, to refer to K as a “constant” can be misleading, because a stress

derivative of T is itself stress-dependent [3, 4]. This gives rise to two second order
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effects: (i) the temperature response to stress fluctuations about a mean stress σm

varies with σm; (ii) the temperature response to a sinusoidally varying stress includes

a second harmonic of double the applied frequency.

Wong et al. [4, 5] developed a method for calculating the magnitude of these effects

from other properties of the material. Although they started with time-dependent

equations which took account both of heat flow and of internal heat sources, they

discarded all such non-equilibrium processes before reaching their result, which was

thus purely thermodynamic. They tested the method experimentally for unidirectional

stress fluctuations in the titanium alloy Ti-6Al-4V, obtaining good agreement with

experiment [5]. However, their theory employed a number of approximations in the

thermodynamics which were not discussed or assessed; in particular, the distinction

between adiabatic and isothermal second derivatives was largely ignored.

Subsequently Ledbetter et al. [6] considered the effect of pressure rather than

unidirectional stress. They used three different expressions for the pressure dependence

of K: one was derived by rough approximations from a Mie-Grüneisen pair potential,

another from the theory of Wong et al., and the third from the second by further

approximations due to Chang [7] which are not always reliable [8]. These expressions

gave values which agreed with each other in order of magnitude for each of eight metals

studied, differing by 20 to 50%.

In the present paper we derive exact thermodynamic expressions for the temper-

ature response of a material subjected to oscillating stress or pressure. We investigate

for various materials the importance of terms neglected in the approximations of Wong

et al. and Ledbetter et al. In §2 we point out that it is the isothermal stress derivative
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of (∂T/∂σ)S which determines the effect of the mean stress σm, and the adiabatic

stress derivative which determines the amplitude of the second harmonic response. In

§3 rigorous thermodynamic expressions are derived for the pressure effects, and the

approximations of Ledbetter et al. are modified accordingly. Calculations on various

materials show that additional terms neglected in the method of Wong et al. make

substantial contributions. In §4 expressions for unidirectional stress are quoted from

a more general analysis for orthorhombic symmetry given elsewhere [9]. Calculations

show that corrections to the theory of Wong et al. are still appreciable, but much less

important than for purely compressional stress.

2. THE STEADY-STATE RESPONSE TO FLUCTUATING STRESS

Wong et al. [5] applied their theory to a unidirectional stress, denoted here by σU ,

with both static and sinusoidal components:

σU = σm +∆σ sinωt, (3)

where σm and ∆σ are constants. We start by taking the more general form

σU = σm + σv, (4)

where σm is the mean stress and σv is an oscillating component of arbitrary shape, so

that

<σU >= σm, <σv >= 0, (5)

where < · · ·> denotes averaging over a long time. In an ideal non-lossy material, the

mean temperature will relax over a sufficiently long time to the ambient temperature T0.

The steady-state response is thus purely oscillatory, and is determined by (∂T/∂σU)S,
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which is itself stress-dependent. Moreover, the effects of σm and σv on (∂T/∂σU)S must

be considered separately. In the steady-state, σm has no effect upon the temperature,

so that its effect on (∂T/∂σU)S is isothermal; whereas in the limit of rapid oscillations

the effect of σv is adiabatic. To the first order in the stress, therefore,

(
∂T

∂σU

)
S

=

(
∂T

∂σU

)
S;0

+

[
∂

∂σU

(
∂T

∂σU

)
S

]
T ;0

σm +

[
∂2T

∂σ2
U

]
S;0

σv, (6)

where the subscript 0 denotes evaluation at σU = 0, T = T0. Integration with respect

to σv then gives

T−T0 =



(

∂T

∂σU

)
S;0

+

[
∂

∂σU

(
∂T

∂σU

)
S

]
T ;0

σm


 σv+

1

2

[
∂2T

∂σ2
U

]
S;0

{
(σv)

2− <(σv)
2 >
}

, (7)

where the constant term is fixed by the steady-state condition <T >= T0.

For the sinusoidal oscillation σv = ∆σ sinωt, this becomes

T − T0 =



(

∂T

∂σU

)
S;0

+

[
∂

∂σU

(
∂T

∂σU

)
S

]
T ;0

σm


∆σ sinωt − 1

4

[
∂2T

∂σ2
U

]
S;0

(∆σ)2 cos 2ωt.

(8)

The response to an applied pressure P = Pm +∆P sinωt is similarly

T−T0 =



(

∂T

∂P

)
S;0

+

[
∂

∂P

(
∂T

∂P

)
S

]
T ;0

Pm


∆P sinωt−1

4

[
∂2T

∂P 2

]
S;0

(∆P )2 cos 2ωt. (9)

In eqs.(8-9) the small second order terms in cos 2ωt do not alter the amplitude ∆T

of the cyclic change in T , since they raise the maximum and minimum temperatures

by the same amount. To this approximation, therefore, the thermoelastic “constant”

of eq.(1) is independent of the amplitude of the fluctuations; and its dependence on

the mean stress is given by a mixed isothermal/adiabatic derivative of T. On the

other hand, the magnitude of the second harmonic response depends on the square
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of the amplitude (∆σ)2 or (∆P )2 as given by the purely adiabatic second derivative

[∂2T/∂σ2
U
]S or [∂2T/∂P 2]S.

The result of Wong et al. [5] for unidirectional stress is given by their eq.(2.6),

which may be written in the present notation as

Cη

V

(
T − T0

T0

)
= −

(
α − 1

E2

∂E

∂T
σm

)
∆σ sinωt− 1

4E2

∂E

∂T
(∆σ)2 cos 2ωt, (10)

where Cη is the heat capacity at constant strain, V is the volume, α is the coefficient of

linear expansion in the direction of the stress, and E is Young’s modulus (whether ES or

ET is not specified). Comparison of eq.(10) with eq.(8) shows that Wong et al. do not

distinguish between the different kinds of second order derivatives. For unidirectional

stress their approximations are equivalent to taking

(
∂T

∂σU

)
S;0

≈ −αTV/Cη, (11)

and [
∂

∂σU

(
∂T

∂σU

)
S

]
T ;0

≈
[
∂2T

∂σ2
U

]
S;0

≈ −TV

Cη

[
∂

∂T

(
1

E

)]
σ;0

. (12)

However, such approximations are unnecessary, because exact thermodynamic expres-

sions for the various stress derivatives are obtainable. In the next section the general

method is illustrated in detail by its simplest application, viz. to a solid under fluctu-

ating hydrostatic pressure. Unidirectional stress is treated more briefly in §4.

3. TEMPERATURE RESPONSE TO FLUCTUATING PRESSURE

3.1 Thermodynamic Expressions

Experimental quantities from which thermoelastic pressure effects can be derived

are the volume V , the adiabatic compressibility χS (or bulk modulus BS)

χS = (1/BS) = −(1/V )(∂V/∂P )S , (13)
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the coefficient of volumetric expansion β, and the heat capacity at constant pressure

CP , together with their temperature derivatives at constant pressure; alternatively, CP

and V may be replaced by the specific heat per unit mass cP and the density ρ, since

they are needed only in the combination CP/V = ρcP . The derivatives in eq.(9) are

then obtained from the following thermodynamic analysis.

The Maxwell relation

(∂T/∂P )S = (∂V/∂S)P (14)

gives immediately

[
∂T

∂P

]
S

=

[
∂V

∂T

]
P

[
∂T

∂S

]
P

=
βV T

CP

= γχST, (15)

where γ is the thermodynamic Grüneisen function defined by (see, e.g.,[10, 11])

γ ≡
[

∂P

∂(U/V )

]
V

= −
[
∂ lnT

∂ lnV

]
S

=
βV

χSCP
. (16)

Eqs.(13-14) then give for the adiabatic second pressure derivative

[
∂2T

∂P 2

]
S

=
∂2V

∂P∂S
= −

[
∂

∂S
(V χS)

]
P

= − T

CP

[
∂

∂T
(V χS)

]
P

= −V T

CP

{[
∂χS

∂T

]
P

+ βχS

}
(17)

= −(βV TχS/CP )(δS + 1), (18)

where δS is the adiabatic Anderson-Grüneisen function defined by Basset et al. [13]:

δS = −
[
∂ lnBS

∂ lnV

]
P

=

[
∂ lnχS

∂ lnV

]
P

= − 1

βBS

[
∂BS

∂T

]
P

. (19)

The isothermal pressure derivative may then be obtained from the identity

[
∂

∂P

(
∂T

∂P

)
S

]
T

=

[
∂2T

∂P 2

]
S

−
[

∂

∂T

(
∂T

∂P

)
S

]
P

(
∂T

∂P

)
S

, (20)
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which with the aid of eqs.(15) and (17) gives the derivative explicitly in terms of primary

experimental quantities:

[
∂

∂P

(
∂T

∂P

)
S

]
T

= −V T

CP

{[
∂χS

∂T

]
P

+ βχS+
V β

CP

(
β+ β2T+T

[
∂β

∂T

]
P

− βT

CP

[
∂CP

∂T

]
P

)}
.

(21)

In contrast, the method of Wong et al. gives for the second derivatives (cf. eq.12)

[
∂2T

∂P 2

]
S

≈
[

∂

∂P

(
∂T

∂P

)
S

]
T

≈ −V T

CV

[
∂χ

∂T

]
P

. (22)

Eq.(17) shows that it is the adiabatic compressibility whose isobaric temperature deriva-

tive is required, that the denominator should be CP (rather than Cη or CV ), and

that there is an additional term in (∂2T/∂P 2)S. Eq.(21) shows that there are further

additional terms in [(∂/∂P )(∂T/∂P )S ]T .

The results obtained in this subsection apply not only to isotropic material but

also to any homogeneous material under hydrostatic pressure.

3.2. Pressure Derivative of the Thermoelastic Coefficient

For a cubic or isotropic material, the thermoelastic coefficient of eq.(2) is given

by

K =
1

3

(
∂ lnT

∂P

)
S

=
1

3
βV/CP =

1

3
γχS. (23)

Approximate thermodynamic expressions for its pressure derivative have been suggested

by Ledbetter et al.1:

1

K0

(
∂K

∂P

)
≈ − δ

B0

≈ − 1

B0

(
dBT

dP
− 1

)
≈ − 1

B0

(
dBS

dP
− 1

)
. (24)

Like those of Wong et al., these expressions do not distinguish fully between adiabatic

and isothermal processes. We have seen in §2 that it is the mixed second derivative of

1A correction factor of one third has been applied.
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eq.(21) that is relevant to the pressure dependence of K. Using this derivative, and also

by direct differentiation of the last of eqs.(23) [12], exact expressions can be obtained

in place of those of eqs.(24):

1

K

(
∂K

∂P

)
T

= − δS

BT

− 1

BS

{1 + γ + (∂γ/∂ lnT )P} (25)

= − δT

BT
− 1

BS
{1− (V T/CP )(∂β/∂T )P } (26)

= − 1

BS

([
∂BS

∂P

]
T

+ (1 + βγT )q

)
, (27)

where BT is the isothermal bulk modulus BS/(1+βγT ), δT is the isothermal Anderson-

Grüneisen function (∂ lnχT /∂ lnV )P (see [13]), and

q = (∂ ln γ/∂ lnV )T = (V/γ)(∂γ/∂V )T , (28)

sometimes called the second Grüneisen function2.

At high temperatures (∂β/∂T )P and (∂γ/∂T )P are usually fairly small, βγT and

hence the difference between BS and BT seldom exceed 10% , and (less reliably) q

is often about unity. Eqs.(25-27) thus suggest the following rough approximations as

modifications of eqs.(24):

1

K

(
∂K

∂P

)
T

≈ −δS + 1 + γ

BS
≈ −δT + 1

BS
≈ −(∂BS/∂P )T + 1

BS
. (29)

3.3. Experimental Magnitudes and Discussion

We have used eqs.(15,17,21) to calculate pressure derivatives of T for several of the

materials considered by Wong et al. and Ledbetter et al., and also for two alkali halides.

2At any point where the thermal expansion changes sign, β, γ and K are zero and δS and q infinite.

Eq.(18) is then indeterminate, although the equivalent eq.(17) is still valid.



11

It is difficult to estimate error in the primary data, and different measurements often

disagree, especially at room temperature where high and low temperature ranges meet.

The values we have adopted are good enough to let us assess the relative importance

of different terms in the thermodynamic expressions, but we have not attempted a

critical assessment of all available data. We give only the room temperature values

(Table I), although for all the materials except the titanium alloy we have calculated

pressure derivatives and K over a range of temperatures. Table II lists values for room

temperature and one higher and one lower temperature, together with the quantity

W2P = −(V T/CP )(∂χS/∂T )P . W2P is the first term in eq.(17), and gives the value

obtained by the method of Wong et al., except for the factor CV /CP which is close to

unity. Table II shows that at all temperatures the mixed derivative is larger than the

adiabatic derivative, typically by a factor of about 1.5, although less (about 1.25) for

Ti and Ti-6Al-4V. Neither derivative is approximated closely by W2P ; the adiabatic

and mixed derivatives are greater by factors of about 1.3 and 1.8 respectively.

Table III gives room temperature isothermal pressure derivatives of lnK, com-

pared with the approximations of eqs.(29). The approximations have errors of about

10% or less, except for Al, where the 20% error for the third approximation appears to

stem from a high value of q. Similar calculations made at other temperatures showed

that K and its isothermal pressure derivative increase fairly slowly with temperature,

typically by about 10% every 100 K. The first two approximations of eqs.(29) remained

accurate to within about 10%, the first approximation being closest at low temperatures

and the second at high temperatures; the third approximation was not tested because

the values of (∂BS/∂P )T were not readily available.
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4. RESPONSE TO FLUCTUATING UNIDIRECTIONAL STRESS

4.1. Thermodynamic Expressions

The derivation of expressions for second order stress derivatives is more complex

than for pressure derivatives, mainly because there are no finite strain coordinates

thermodynamically conjugate to elements of the Cauchy stress tensor σαβ . A rigorous

analysis for orthorhombic symmetry is given elsewhere [9], which includes as a special

case unidirectional stress σU in an isotropic material. This gives

(
∂T

∂σU

)
= −1

3

(
∂T

∂P

)
= −

(
V T

CP

)
α, (30)

[
∂2T

∂σ2
U

]
S;0

= −
(

V T

CP

)[(
∂(1/ES)

∂T

)
P

− α
(
1 + 4νS

ES

)]
(31)

[
∂

∂σU

(
∂T

∂σU

)
S

]
T ;0

=

[
∂2T

∂σ2
U

]
S;0

−
(

TV 2α2

C2
P

)[
1 + βT −

(
∂ lnCP

∂ lnT

)
P

+

(
∂ lnβ

∂ lnT

)
P

]
(32)

where ES and νS are respectively the adiabatic Young’s modulus and Poisson’s ratio.

Comparing these with Wong’s approximations of eqs.(11-12), we see that Cη should be

replaced by CP , that the Young’s modulus required is ES, and that there are additional

terms in the second derivatives which then differ from each other.

4.2. Experimental Magnitudes and Discussion

We have used eqs.(31-32) to compute second order unidirectional stress derivatives

of T for some metals, including the alloy studied by Wong et al. [5]. Table IV gives

some results, together with ES and its temperature derivative (other data is in Table I).

The most obvious features of these results compared with those for hydrostatic pressure

is that the additional terms reduce instead of enhancing the magnitudes given by the

Wong approximation W2U = −(V T/CP [∂(1/ES)/∂T ]P , and also that the difference

between the adiabatic and mixed second derivatives is relatively much smaller than
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that between the analogous pressure derivatives. This can be explained by expressing

σU as a combination of a strong shear stress σSH and a comparatively weak negative

pressure. Up to the second order, in an isotropic material these components affect the

temperature independently. Although the first order shear derivative (∂T/∂σSH)P is

zero, the second derivatives are large and dominate the unidirectional stress derivatives.

If σSH has strength equivalent to σ4 = σSH, then [9]

(∂2T/∂σ2
SH

)S = (−V T/CP ){[∂(1/G)/∂T ]P − β(1/G)}, (33)

where G=GS=GT is the rigidity modulus; moreover,there is no difference between the

adiabatic and mixed second differentives because (∂T/∂σSH)S = 0. The second term of

eq.(33) is of opposite sign to the Wong approximation (given by the first term), reducing

the magnitude. For unidirectional stress derivatives this is partially compensated by the

additional terms in the small pressure contributions, which therefore lessen differences

from the Wong approximation and also produce a small difference between the adiabatic

and mixed derivatives. For Ti and Ti-6Al-4V corrections to W2U are particularly small,

which may explain why Wong et al. [5] obtained good agreement with their experimental

results for unidirectional stress despite their neglect of terms important for other types

of stress.

5. CONCLUSION

We have found that errors in earlier approximations for second order thermoelastic

effects in isotropic materials are substantial for compressive stress but much smaller for

unidirectional stress. Elsewhere [9] we discuss (i) more complex stress fields in isotropic

materials, including whether it is possible to deduce from temperature fluctuations the
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separate contributions of compressive and shear stress; (ii) anisotropic materials.
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Table I. Experimental Data for Pressure Analysis

Material χS α cP

(
∂χS

∂ lnT

)
P

(
∂ lnα
∂ lnT

)
P

(
∂ lnCP
∂ lnT

)
P

– TPa−1 10−6K−1 J·Kg−1·K−1 TPa−1 – –

NaCl 39.9 39.0 864 4.70 0.257 0.145

KCl 56.1 36.3 686 5.60 0.485 0.057

Al 13.1 16.7 906 0.924 0.179 0.154

Cu 7.16 16.7 386 0.378 0.181 0.156

Ti 9.33 8.30 520 0.290 0.322 0.176

Ti6Al4V 9.43 9.14 529 0.281 0.199 0.245
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Table II. Calculated Pressure Derivatives

Material T
(

∂T
∂P

)
S

K
(

∂2T
∂P 2

)
S

[
∂

∂P

(
∂T
∂P

)
S

]
T

W2P

– K K·GPa−1 TPa−1 K·GPa−2 K·GPa−2 K·GPa−2

NaCl 160 9.01 18.77 -1.50 -2.06 -1.15

NaCl 294 18.73 21.23 -3.30 -4.67 -2.56

NaCl 675 53.90 26.62 -11.8 -17.9 -9.22

KCl 160 12.12 25.24 -3.50 -4.53 -2.85

KCl 300 24.08 26.75 -5.46 -8.28 -4.11

KCl 550 53.03 32.14 -16.40 -23.59 -13.13

Al 160 3.52 7.32 -0.229 -0.294 -0.184

Al 300 6.12 6.80 -0.457 -0.587 -0.377

Al 550 16.68 10.11 -1.08 -1.49 -0.845

Cu 160 2.25 4.69 -0.065 -0.098 -0.050

Cu 295 4.28 4.84 -0.140 -0.205 -0.110

Cu 673 10.37 5.14 -0.368 -0.546 -0.287

Ti 223 2.34 3.49 -0.117 -0.139 -0.095

Ti 293 3.11 3.54 -0.153 -0.191 -0.124

Ti 673 8.00 3.96 -0.402 -0.507 -0.120

Ti6Al4V 295 3.46 3.91 -0.153 -0.192 -0.120
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Table III. Modified Approximations for (∂ lnK/∂P )T at Room Temperature

Material
(

∂BS
∂P

)
T

(
∂ lnK
∂P

)
T

−δS + 1 + γ
BS

−δT + 1
BS

−(∂BS/∂P )T + 1
BS

– – TPa−1 TPa−1 TPa−1 TPa−1

NaCl 5.3 -249 -240 -254 -251

KCl 5.1 -344 -307 -368 -342

Al 4.9 -96 -95 -98 -78

Cu 5.5 -48 -47 -49 -47

Ti – -61 -60 -64 –

Ti6Al4V – -55 -56 -57 –
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Table IV. Calculated Stress Derivatives at Room Temperature

Material E−1
S

(
∂(E−1

S )
∂ lnT

)
P

(
∂2T
∂σ2

U

)
S

[
∂

∂σU

(
∂T
∂σU

)
S

]
T

W2U

– TPa−1 TPa−1 K·GPa−2 K·GPa−2 K·GPa−2

Al 14.3 2.44 -0.923 -0.937 -0.993

Cu 7.80 0.78 -0.200 -0.208 -0.227

Ti 8.68 1.55 -0.642 -0.646 -0.662

Ti6Al4V 9.00 1.18 -0.481 -0.485 -0.505


